
NSTRUMENT

ATION NEUTRON SOURCE

LIQUIDS REFLECTOMETER

The Liquids Reflectometer features a horizontal sample geometry and thus can accommodate air/liquid surfaces in addition to air/solid and liquid/solid interfaces. Active vibration isolation minimizes capillary-wave production by the external environment. Data rates and Q range covered at a single scattering angle setting will be

sufficiently high to permit "real-time" kinetic studies on many systems. Timeresolved experiments include investigations of chemical kinetics, solidstate reactions, phase transitions, and chemical reactions in general.

SPECIFICATIONS

Source- to-sample distance	13.6 m
Sample- to-detector distance	1.5 m
Detector size	20 x 20 cm ²
Detector resolution	1.3 x 1.3 mm ²
Moderator	Coupled supercritical hydrogen
Bandwidth	$\Delta\lambda = 3.5 \text{ Å}$
Wavelength range	2.5 Å < λ < 17.5 Å
Q range (air/ liquid)	0 Å ⁻¹ < Q < 0.4 Å ⁻¹
Q range (air/ solid)	0 Å ⁻¹ < Q < 0.3 Å ⁻¹
Minimum reflectivity	1 x 10 ⁻⁷

Status: Operational

Liquids Reflectometer goniostat.

APPLICATIONS

The Liquids Reflectometer is useful for a wide range of science. Current areas of interest include biomaterials, polymers, and chemistry involving thin layers of surfactants or other materials on the surfaces of liquids, such as cell-membrane analogs. These systems provide a flexible platform to study structure-property relationships at the boundary between hard and soft matter, with applications in biomimetics, biosensing, and bio-compatible films; hydrogen storage and fuel cells; and polymers.

FOR MORE INFORMATION, CONTACT

Instrument Scientist: John Ankner, anknerjf@ornl.gov, 865.377.4523 Instrument Scientist: Jim Browning, browningjf@ornl.gov, 865.209.5273 Scientific Associate: Candice Halbert, halbertce@ornl.gov, 865.643.2334

http://neutrons.ornl.gov/instruments/SNS/LR

